Cookies Policy

The website of the University of Cádiz uses its own and third-party cookies to carry out analysis of use and measurement of traffic, as well as to allow the correct functioning in social networks, and in this way to improve your browsing experience.

If you want to configure cookies, press the button Customize Cookies. You can also access the cookie settings at any time from the corresponding link in the footer.

For more information about cookies you can consult the Cookies policy from the website of the University of Cádiz.

Cookies customization

The website of the University of Cádiz uses its own and third-party cookies to carry out analysis of use and measurement of traffic, as well as to allow the correct functioning in social networks, and in this way to improve your browsing experience.

For more information about cookies you can consult the Cookies policy from the website of the University of Cádiz. You can also access the cookie settings at any time from the corresponding link in the footer.

You can configure the website cookies according to their purpose:

  • Statistical analysis

    Third-party cookies (Google Analytics) are used on this site that allow the number of users to be quantified anonymously (personal data will never be obtained to identify the user) and thus be able to analyze the use made by users of our service, in order to improve the browsing experience and offer our content optimally.

  • Social networks

    Third-party cookies are used on this website that allow the proper functioning of some social networks (mainly YouTube and Twitter) without using any personal data of the user.

UniversidaddeCádiz
UCA-SEA Innovation Center Smart Manufacturing Lab

Additive vs. Subtractive Manufacturing: A Comparative Life Cycle and Cost Analyses of Steel Mill Spare Parts

Additive vs. Subtractive Manufacturing: A Comparative Life Cycle and Cost Analyses of Steel Mill Spare Parts
This research, published in the Journal of Manufacturing and Materials Processing in the context of growing environmental concerns and the demand for more sustainable manufacturing practices, this study evaluates the environmental and economic performance of two production routes for a stainless steel support block used in steel mills. A comparative Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) were conducted to assess a conventional subtractive manufacturing process based on Computer Numerical Control (CNC) machining versus a hybrid approach that combines Plasma Arc-Wire Arc Additive Manufacturing (PA-WAAM) with CNC finishing. The LCA was carried out using ReCiPe 2016 Midpoint and Endpoint methodologies in SimaPro, while the LCC employed a cradle-to-gate cost model. Results showed that the hybrid WAAM-CNC route reduced average environmental impacts by 49% across 18 categories and decreased steel consumption by approximately 70% due to near-net-shape fabrication. Although the hybrid method incurred an approximate 3.5 times increase in unit production cost, this was primarily attributed to equipment investment. In contrast, operational costs such as labor, materials, and consumables were significantly lower—by 66%, 28%, and 45%, respectively. These findings support the hybrid approach as a more sustainable manufacturing alternative with the potential for long-term cost optimization as additive technologies mature.

See full scientific production at: UCA scientific production logo